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Abstract. We generalize a classical convergence result for the Simulated Annealing algorithm to a 
stochastic optimization context, i.e., to the case where cost function observations are disturbed by 
random noise. It is shown that for a certain class of noise distributions, the convergence assertion 
remains valid, provided that the standard deviation of the noise is reduced in the successive steps of 
cost function evaluation (e.g., by repeated observation) with a speed O(k-7), where 7 is an arbitrary 
constant larger than one. 
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1. Introduction 

The Simulated Annealing algorithm, introduced about ten years ago by Kirkpatrick, 
Gelatt and Vecchi [8] into the area of  combinatorial  optimization, has developed 
into a well known and thoroughly studied optimization technique with a large (and 
still rapidly growing) number  of  applications. (Cf. Laarhoven and Aarts [9], Aarts 
and Korst  [1]; see also the bibliography in [7].) 

The standard type of  applications concerns optimization problems of the form 

Minimize f ( i ) ,  
i c S  

where S is a finite set of  feasible solutions which usually exposes a specific 
combinatorial  structure. The algorithm works as follows (see [1], p. 16): 

procedure SimAnn 
begin 

initialize (istart, CIo, L0); 
m : = O ;  

i := istart; 
repeat 

fo r  1 := 1 to L.~ do 
begin 

generate ( j  from Si); 

i f  f ( j )  _< f ( i )  then i := j 

i f e x p  ( f ( i ) . y ( j ) )  > r a n d o m ( O , l ) t h e n / : :  j else 
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end 
m : =  r a ÷  1; 
CalculateLength(L~); 
CalculateControl(c~); 
until stopcriterion 

end. 

Therein, 
- -  i s t a r t ,  i and j are feasible solutions from S; 
- c~, c ] , . . ,  is a (usually decreasing) sequence of values for the control para- 

meter, often also called temperature; 
- the sets Si form the predefined neighborhood structure: to each feasible solu- 

tion i E S, a set Si C_ S of "neighbor solutions" is assigned. 
- random(oz, ~) is a procedure selecting a uniformly distributed (pseudo)random 

number from the interval [c~,/3]; 
- CalculateLength and CalculateControl are procedures updating the values L m 

and c~; they define the so called cooling schedule. 

Most works on Simulated Annealing assume implicitly that to each feasible 
solution i, the corresponding cost value f ( i )  can be computed exactly. In this 
article, we investigate the case where f ( i )  can only be observed with a random 
error. It is assumed that at each time k when we want to to determine f ( i ) ,  a value 
f~(i) can be observed, which is obtained from f ( i )  by the superposition of random 
noise: 

fk(i)  = f ( i )  ÷¢ik, (1) 

where the values eik are independent random variables with mean zero. This 
assumption is typical for stochastic optimization problems. For example, suppose 
that f ( i )  denotes the expected costs oecuring in a situation that depends on para- 
meter i and on a random influence c~; moreover, suppose that to given i, an unbiased 
estimate fk (i) of the expected costs can be determined by means of a simulation 
experiment. Then we are within the problem context decribed above. 

The aim of our article is to indicate conditions under which convergence results 
for the Simulated Annealing algorithm (see, e.g., Gelfand and Mitter [5], Hajek 
[6]) generalize to our stochastic optimization context. It has been argued that 
convergence results, stating that for certain cooling schedules the current solutions 
i converge in distribution to global optimizers, are not sufficient for a justification of 
Simulated Annealing (cf. [2]). Nevertheless, we think that it makes sense to gather 
exact information under which conditions such a convergence can be expected, and 
when it cannot be hoped for. It is easy to see that convergence to global optimizers 
is not possible, if the random noise Ei~ is, say, normally distributed with constant 
variance: under these circumstances, the noise will keep the probability that the 
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current solution is suboptimal above a fixed level larger than zero. We will show 
that convergence can be obtained for suitable cooling schedules, if Var(Eik) is 
decreased fast enough in the successive steps of evaluation. Notice that a reduction 
of the variance of the random noise eik can always be achieved by repeated, 
independent observations at i, taking the average value of the observations as the 
estimate fk (i). 

The problem treated here has already been formulated by Roenko [10]. His 
approach, however, makes it necessary to store all feasible solutions i encountered 
during the execution of the algorithm and to compare them with each newly 
generated solution j .  This seems to be unrealistic for practical applications. In our 
approach, only information on the current solution i and a neighbor solution j is 
required. 

2. Convergence in the Undisturbed Case 

We start with a short review of a basic convergence result in the undisturbed 
case (cf. Aarts and Korst [1], ch. 3). First, we observe that from the viewpoint 
of probability theory, the algorithm SimAnn simulates an inhomogenous Markov 
chain, consisting of a sequence of homogenous Markov chains AA ra (m = O, 1,.. .) 
where jVI m contains Lm state transitions. In the sequel, we assume that the Markov 
chain lengths Lra are kept constant, i.e., Lra = L. Furthermore, we assume that L 
is chosen as the minimum number of transitions to neighbors, required to reach an 
optimal solution iopt from an arbitrary solution j ~ S. 

, denotes the value of the control parameter during the execution As before, c m 
' is supposed to satisfy the conditions of the Markov chain 34 m. The sequence c~ 

= 0. While the index rn refers to cm+ l '  _< cry' (m = 0, 1, .. .) and l imr~oo cra 
Markov chain 34~ ,  the index k will be used to refer to the single state transitions 
in the algorithm. The transition matrix P(k)  = (Pij(k))i,jes for the kth step is 
then given by 

Pij(h) = { ]Si[-' Is , ( j )  • exp (-(f(J)-f(;))+ck ) , i ¢ j, 

1 - ~l~S, lCi PiL(c~:), i = j, 
(2) 

,!  where [ • ] denotes the cardinality of a set, [ is the indicator function, and ck = c.~ 
for raL < k <_ (m + 1)L. 

By the underlying graph, we understand the following graph: its nodes are the 
states i E S of the Markov chain, and its edges are defined by the neighborhood 
relation: (i, j ) is edge if and only i f j  E Si. We always assume that the neighborhood 
relation is symmetric, i.e., j E Si exactly if i E S d. Then, the underlying graph can 
be conceived as an undirected graph. 
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Without loss of generality, we may assume S = { 1 , . . . ,  n}. Let the probability 
vector q(k) = (q l ( k ) , . . . ,  q~(k)) denote the distribution of the current solution 
i = i(k) after the kth step of the algorithm (k = 1,2, . . . ) .  Obviously, 

q(k) = q ( 0 ) P ( a ) . . . P ( k ) ,  

where q(0) = (q l (0 ) , . . . ,  q~(0)) is the distribution of the initial solution i.~ta,.t. 
Aarts and Korst prove the following convergence theorem ([1], p. 46 - 50): 

THEOREM 2.1. Suppose that for an application of SimAnn to a combinatorial 
optimization problem, the following conditions hold: 
(i) The underlying graph is connected. 

i satisfies (ii) The sequence c~ 
(L + 1)A 

e~ >__ log(ra + 2) (m = 0, 1, . . . ) ,  

where 
A := ./ maxs ( f ( j ) _ _ , ~  - f ( i ) )  

is a Lipschitz constant. 
Then, for an arbitrary initial distribution q(O), the distribution of the current 
solution converges to the uniform distribution on the set Sopt of  global optimizers: 

lira q(k)= lim q(O)P(1 
k--*c~ k--+c~ 

where q* -- (q~, . . . ,  q~ ) is given 

1 
ISop l Isop (i) (i 

A recapitulation of the proof of 

) . . . P ( k )  = q*, (3) 

by 

s). 

this theorem in [1], ch. 3.4, immediately shows 
that the assertion also holds if the first k0 transitions with transition matrices 
P ( 1 ) , . . . ,  P(ko) are skipped (ko fixed); the convergence result only depends on 
the "tail" of the infinite sequence of transitions. We have therefore even 

lim qP(ko + 1 ) . - . P ( k )  = q* (4) 
k--+oo,k>_ko 

for arbitrary fixed k0 and arbitrary initial distribution q. 

3. Convergence in the Disturbed Case 

Now we assume that the evaluation step in SimAnn uses, instead of exp(( f ( i )  - 
f ( j ) ) / c ~ ) ,  theacceptance probabilities exp((fk(i) - f k ( j ) ) / c~) ,  where the dis- 
turbed values fk( ' )  are given by (1). Moreover, let us assume first that the noise 
variables cik are independent and N'(0, cry) distributed. (This assumption will be 
relaxed in Section 4.) In order to prove our result, we need three lemmata: 
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LEMMA 3.1. Let the conditions of Theorem 2.1 be satisfied, and let [~(k ) be a 
sequence of transition matrices such that 

with 

o o  

l iP(k)-  P(k)ll < 
h = l  

(5) 

and 

[IPAI] = m a x ~  ~-~p~zalj ~ m~ax~p~z~-~'~ lazj[ < max~--~'~pi~" IIA[F 

= I I A l l .  

We show by induction w.r.t, k that for r _< k, 

k 

][ P ( r ) . . . P ( k )  - P(r).. .[~(k)11 -< E l l P ( l )  - /5 ( l ) l l .  (7) 
I=r 

The case k = r is clear. Let us verify that if (7) holds for some k >_ r, then it 
also holds for k + 1: 

II P (~ ) . -  . p ( k  + 1) - / 5 @ ) . . . / 5 ( k  + 1)II 

_< 1[ P ( r ) . -  .P(k)  [P(k + 1) - / 5 ( k  + 1)] II 

+[I [ P ( r ) . . . e ( k )  - [~(r). . . /5(k)]/5(k + 1)II 

]lA[I := max ~ ]aljl 
J 

for A = (a i j ) .  Then also 

lim q(0)/5(1) . . - /5(k)  = q* 
k---+ c~ 

holds for an arbitrary initial distribution q(O). 
Proof It is easy to verify that [[. I I is a norm on the space of real [n × n]-matrices. 

Moreover, 

IIAP[I < IIA]I and IIPAII_ ]IA]I (6) 

holds for each stochastic In x n]-matrix P: 

IIAP[I-- m a x , .  Eai lP l j  <_ maxE[ai l[  E p l  j = [[A[[, 
j l I j 
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k k + l  

_< IIP(~ + 1 ) -  P(k  + 1)11+ ~ t l P ( Z )  - P(011 = ~-~ lIP(l) - P(l)ll, 
l=r l=r 

where we have used (6) and the induction assumption. This proves (7) for every 
k. 

Now, set 

A~,~ : = P ( r ) . . . P ( k ) - P ( r ) . . . P ( k )  (k >_ r). 

Let c > 0 arbitrary. Equation (7) yields 

k 

IId,,k[I _< ~ l i P ( t ) -  P(011. 
l=r 

Hence it follows from condition (5) that there is a number r such that 
/ 

IlA,,kll < ~ forall k _> r. 

Since 

IIxAl[1 <_ ~ x~ ~ la~jl <_ ~ x~llAll = IIAII 
i j i 

for each probability vector x C R ~ and each [n × n] matrix A, we obtain with 

~(k) := q ( 0 ) P ( 1 ) - - . P ( k )  

II q ( o ) P ( 1 ) . . . P ( k )  - q* IIa 

II ~(~- 1)UP(r)., ,P(k)- P(r) ooop(k)] II1 

+l l  ~(r  - 1 ) P ( r ) . . . F ( k )  - q~ 111 

_< IIA,,kll + II ~(~ - 1 ) P ( ~ ) .  , . P ( k )  - q* II1 

< E + II O(r - 1 ) P ( ~ ) . . . P ( k )  - q* II1 

for k >__ r. Because of (4), 

II ~(~ - 1 ) P ( r ) . . . e ( k )  - q* I[1 ~ 0 (k -~ ~ ) .  

In total, this yields 

[I q ( 0 ) P ( 1 ) - . . P ( k )  - q *  II1 --* 0 (k ~ oc). [] 

In the following lemma, we consider the kth state transition of the algorithm. Since 
the index k is kept fixed, it is be omitted in the notation for the presence. 

that 
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LEMMA 3.2. Let the temperature have the value e, and let Pij resp. Pij denote 
the transition probability from state i to state j in the undisturbed Markov chain, 
resp. in the Markov chain disturbed according to (1), where the random noise is 
N'(0, ~2) distributed. Then for  i • S and j • Si, 

[ ~ i j - P i j - -  l { ~ ( - ~ ) + e x p ( ~ c 2 2 n  ~ ) [ 1 - ~ ( ~ - ~ ) ]  

where 

# = f ( j )  - f ( i ) ,  

8 ~--- V /20"~  

and ~ is the distribution function of  the standard normal distribution ./V(~ 1 ). 
Proof. By (2), = ( l / n )  exp(-#+/c)  for j • Si. Let us compute Pij. The 

disturbed function values in i and j are given by 

f ( i )  = f ( i )  + ei, ](J) = f (J )  + ej, 

with independent noise variables ei, ~j. Hence the acceptance probability for given 
el and ej is 

/5{~i'~')- 1 e x p ( ( # + e J - e i ) + )  1 e x p (  ( # + s z ) +  
n C n C 

where z = (ej - ei)/~ ~ N'(0, 1). We have to take average of/5~,~) over all 
(e~, ej), i.e., over all values of the variable z distributed according to N'(0, 1). Let 

:= ~ '  be the density of the N'(0, 1)-distribution. Then one obtains by a short 
calculation: 

nPij = exp (# + 8z)+ 
co C 

i ( )a j f  = c 2 z z + exp 
a - - ~  I z / s  

= ~  ( - ~ ) +  exp (;~2 ~ )  

which yields the assertion. 

qo(z) dz 

# + e 8z) qo(z) dz 

[] 

Now, we consider the index k as variable. For each k, we have a specific temperature 
ck and noise eik with a specific standard deviation ek. 
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LEMMA 3.3. I f  in the inhomogenous Markov chain, sk = x/~r~ is of order 
O(k -'y) with 7 > 1, and ck is of ordera((logk)-l), then 

o o  

}2  IP~j(k) - k~j(k)l < 
k = l  

for all i, j E S. 
Proof. For j ~ Si, the assertion is trivial. Assume j E Si. We consider the 

r.h.s, of (8) for different transitions k. 

Case (i): # > O. 
The r.h.s, of (8) for a given k can be decomposed in the form ( 1/n)Ak + ( 1/n)B~ - 
(1/n)Ck,  where 

Ak = ¢ ( - ~ ) ,  

) -ex - Bk=exP\2c 2 ek ~ ' 

C k = e x P \ 2 c ~  ~ " ~ ~-k Sk " 

We show that ~ k  IAkl < ~ ,  ~ k  IBkl < ~ and ~ k  ICkl < ~ .  First, observe 
that 

O _ < ~ ( - ~ ) < ~ ( - c o n s t . k )  

Since 

il~(x) < , x , ~  exp - 

- - ,o  (k -~ ~ ) ,  

(9) 

for x < oc, the convergence is of exponential speed. This proves ~ k  IAk] < ~ .  
Secondly, we have 

0_<Bk = e x p  -~-k expk  2e2j  - 1 _<exP\2c  2 j  - 1. 

For 0 _< z _< 1, the estimation e ~ - 1 _< (e - 1)x holds, and therefore 

e x P \ 2 c 2 ] - l _ < ( e - 1 ) - 2 - ~ c  ~ _< const- <_ cons t . k  -3/2. 
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Hence ~ k  IBkl < ~ .  Finally, Ck >_ 0, and for sufficiently large k, we obtain 

e x P \ 2 c  ~ ~ _<exp 1 - 7 ~  ~ _<e 

and 

const .k  _< ~ ( 1 -  const-k)--+0 ( h - , o o )  

with exponential speed. Hence also ~k  Ickl < ~ .  This proves the assertion for 
case (i). 

Case (ii): # < 0. 

In this case, we decompose the r.h.s, of (8) for a given k in the form (1/n)Dk + 
( 1/n)Ek, where 

Dk = • ( - s ~ . ) - e x p  

We find (using # < 0): 

[1o(  

1 = ~ ( ~ ) _ < ~ 5 ( - c o n s t . k ) - - - + O  (k---+oc) 

with exponential speed, so ~ k  I Dkl < oc holds. Now, for sufficently large k, 

0_<Ek = exP \2c  2]  .exp # # sk 

_< const "exp ( - e ~ )  ~ ( ~ ) "  

By (9), we have ~ ( - x )  < ~(x) /x  (x > 0). Therefore, with constants Ix and C' 
and for sufficiently large k, 

exp-7~-~ ~ 7~k < exp c-~ - 

_< const . e x p \  K ~C-fJ 

# 2 _< const -exp -~C--ffk --+ 0 (k --+ ec) 
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with exponential speed. This proves ~ k  IEkl < oo. 

Case (iii): # = O. 
In this case, the r.h.s, of (8) for a given k yields 

{ ( s 2 ~  ( ( s k ) )  1} 1 { ( ~ )  1} 
in e x P \ 2 ~ ]  1-/ l~ ~ - 2  =-n  exp ¢ ( - x ) -  

=: G(x) 

with x := sk/ck --+ 0 as k --~ oo. Since 

1 1 
• (x) = ~ + --&~x + O(x:)  (x ~ o), 

expansion of G(x) at x = 0 leads to 

x ) 
n ~ + ° (x : )  (x --, o), 

and therefore IG(x)l < Ixl for sufficiently small x. Now 

x = s ~ / c k = O ( k  -7.1ogk) ( k ~ o o )  

with 7 > 1, so ~ k  8k/ck converges, and hence also ~ k  IG(sdck)l, which com- 
pletes the proof. [] 

Now we are in the position to state our main result: 

THEOREM 3.1. If  the standard deviations ~rk of the independent, normally dis- 
tributed noise variables eik decrease with an order O(k-'r), where 7 > 1, 
then the assertion of Theorem 2.1 holds also for disturbed function observations 
]k(i) = f(i)  + ¢ik. 

Proof. The result follows immediately from Lemma 3.1 and Lemma 3.3, 
since 

N N 

r i P ( k )  - P(k)ll ~_ Z Z IP~j(k) - P~j(k)l. 
k = l  i,jES k = l  

[] 

REMARK 3.1. If neighbor solutions i, j always have different objective function 
values, i.e., if f(i)  # f ( j )  for all i E S, j E Si, then the condition ak = O(k -7) 
(7 > 1) in Theorem 3.1 can be replaced by the weaker condition a~ = O(k-1). 
The reader can verify this by a recapitulation of the proof, observing that case (iii) 
in the proof of Lemma 3.3 is now impossible. 
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REMARK 3.2. It is easy to see that, just as in the undisturbed case, the assertion of 
Theorem 3.1 still holds if a fixed number k0 of initial transitions is skipped (cf. (4)). 

4. Generalization to Other Noise Distributions 

The question arises whether the assertion of Theorem 3.1 depends on the special 
assumption of normally distributed noise. In this section, we will show that this is 
not the case. For that purpose, let us start with a definition. 

Following Birnbaum [3], we say that a distribution #l is more peaked around zero 
than a distribution #2, if 

# l (  ] - t, t[ ) _> #z( ] - t, t[ ) f o r a l l t > 0 .  

This holds if and only if there are random variables X1 ,'~ #l and X2 ~ #2 such 
that IXl[ _< [Xzl. It is easy to show that i f# l  is more peaked around zero than #2, 
and both P1 and #2 are symmetric around zero, then 

for each R > 0 and for each function ¢ that is nondecreasing in the interval [0, R]. 

The following theorem allows a generalization of Theorem 3.1 from normal noise 
distributions to rectangular distributions, triangular distributions, Maxwell distri- 
butions etc.: 

THEOREM 4.1. Let eik be independent noise variables with cjk - Eik distributed 
according to #~ ( i, j E S, i 7~ j ) ,  and assume that f o r  the distributions #~ ( k > 1 ) 
the fo l lowing conditions hold: 

(i) #k is symmetric around zero, 
(ii) #k is more peaked around zero than N'(0, ~ ) ,  where ~k = O( k -~ ) with a 
constant 7 > 1. 

Then also in an environment with noise ¢ik, the assertion o f  Theorem 2.1 holds. 

Proof. Let/5~j(k) denote the transition probabilities at step k under noise ~/~ 
and ~j~. It suffices to show that 

OO 

E IPiJ(k) - f:)ij(k)[ < oc (10) 
k = l  

for all i, j C S (cf. Lemma 3.3). Let h be fixed. Analogously as in the proof of 
Lemma 3.2, we set 

~2 n C n 
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where s = sk and 2 = (~  - Q)/s~. Let #~0) denote the distribution of 5. Obviously, 

#~o) is the linear compression of the distribution #~ by the factor ~k. Then, because 

of condition (ii), #~0) is more peaked around zero than N'(0, 1). The transition 

probability [~ij(k) is obtained from the probabilities/5{~,q) by taking average 

over (~,  (j), resp. over 2 ~ #~0). Using the symmetry of #~0), one finds after short 
calculation: 

with 

~0 °° n[~ij - nPij = ~b/~(2) d#~°)(2) 

Let us distinguish the cases # > 0 and # _< 0. In the first case, ~bk(2) is non- 
negative and nondecreasing in the interval [0, # / @  For an arbitrary sequence Rk 
of nonnegative numbers, the estimation 

follows from the fact that #~0) is more peaked around zero than N'(0, 1). We 
choose Rk := # / ~ .  Then ~ k  ' I ' ( -Rk)  < z~ (cf. the proof of Lemma 3.3, case 
(i)). Furthermore, one obtains 

again because #(0) is more peaked around zero than N'(0, 1), and by the mono- 
tonicity of ~ ( 2 )  in [0, Rk]. Now, 

fo"k ~bk( 2) p( 2)d2 <_ ~°° ~bk( 2) #( 2)d2 + 4 { ( - R k )  

= ]f)ij(k) - Pij(k)l q- 4 ~ ( -R~) ,  

where [~id (k) denotes the acceptance probability for normally distributed noise with 
standard deviation sk. Because of Lemma 3.3, ~ k  I t'ij (k) - Pij (k)l converges. 

If, on the other hand, p _< 0, then one obtains ¢k(2) _< 0 and - ¢ k ( z )  nonde- 
creasing on [0, oc [, and hence 

/0 /5 0 _< nP~j-  n ~ j  = -  ~(~)d#~°)(~) _<- ~k(~)~(Z)d~ 

= nP~j(k)- ~ j ( k ) ,  [] 
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which leads again to a convergent  series. In total, this yields (10). 

13 

5. Conclusion 

Our results show that if Simulated Annealing is applied in the context of  stochastic 
optimization, it is not efficient to spend at each evaluation step the same effort for 
the est imation of  the (disturbed) cost function: In the first transition steps of  the 
algorithm, we can do with relatively vague estimations; the more the temperature is 
decreased, the more accurate cost function evaluations are required. For the cooling 
schedule of  Theorem 2.1, which guarantees convergence of  the current solutions 
to global optimizers,  we have found that each reduction of  the standard error of  
the order O ( k  -'y) (7 > 1) is sufficient for maintaining the desired convergence 
property. 

Let  us mention that a gradual increment of  the precision in the cost function 
estimations, as prescribed by the Theorems 3.1 and 4.1, is also a common feature of  
other stochastic optimization techniques, such as the well-known Kiefer-Wolfowitz  
procedure. 

Our results give first hints for Simulated Annealing in a noisy environment,  but 
a lot of  work remains to be done. The next ste.t~ of  research should perhaps include 
a generalization of  f ini te-t ime behavior results (see, e.g., Catoni [4]) to the noisy 
context.  Also, experimental  results on the application of  Simulated Annealing to 
different "hard" stochastic optimization problems would be of  great value. 
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